넷플릭스 AI 콘텐츠 제작 혁신: 엔터테인먼트 미래

영상 콘텐츠 제작 방식도 AI로 인해 커다란 변화를 맞고 있습니다. 세계 최대 스트리밍 플랫폼 중 하나인 넷플릭스(Netflix)가 생성형 인공지능(Generative AI, 이하 GenAI)을 본격적으로 도입하면서, 드라마와 영화 제작의 흐름을 바꾸고 있습니다. 이번 넷플릭스 AI 도입은 단순한 기술 실험을 넘어 실제 상용화 단계에 들어섰다는 점에서 더욱 주목할 만합니다. 특히, 시각효과(VFX) 작업을 빠르고 저렴하게 구현하면서 콘텐츠 제작의 전반적인 효율성을 높이고 있습니다.

생성형 AI, 영상 제작을 다시 쓰다

넷플릭스는 GenAI를 실제 콘텐츠 제작에 적용한 사례로 아르헨티나 드라마 ‘엘 에테르나우타(El Eternauta)’를 소개했습니다. 이 드라마에서는 건물이 무너지는 장면을 AI 기술로 제작했는데, 작업에 소요되는 시간이 기존 대비 약 10분의 1 수준으로 줄었고, 비용도 크게 절감됐다고 합니다. 넷플릭스 공동 CEO 테드 사란도스(Ted Sarandos)는 이를 통해 AI가 단순 보조 기술을 넘어, 영상 제작의 핵심 자산이 될 수 있음을 강조했습니다.

과거에는 시각효과나 디에이징(de-aging)처럼 복잡한 기술이 오직 수백억 원 규모의 블록버스터 영화에서만 가능했던 반면, 이젠 AI가 이 같은 ‘비용 장벽’을 허물고 있습니다.

넷플릭스 AI

사례로 본 AI의 가능성: ‘엘 에테르나우타’

‘엘 에테르나우타’는 단순히 AI를 활용했다는 의미를 넘어, 콘텐츠 제작 방식이 실제로 변화하고 있음을 보여주는 결정적인 사례입니다. 이 프로젝트는 넷플릭스 내부 제작팀과 외부 전문가들이 협업해 AI 기술을 실제 촬영과 연출에 적용한 첫 테스트베드였습니다.

특히 중요한 점은, AI가 창의적인 결정을 내리는 것이 아니라 인간 감독과 제작자의 계획 아래에서 시각적으로 그 결과물을 구현했다는 점입니다. 이러한 방식은 향후 드라마나 영화 작업의 새로운 표준이 될 가능성을 보여주고 있습니다.

콘텐츠 제작에 미치는 변화: 더 빠르게, 더 저렴하게, 더 유연하게

AI가 도입됨에 따라 가장 먼저 바뀐 것은 제작 속도입니다. 전통적으로 사전 시각화(pre-visualization)나 샷 플래닝(shot planning) 과정은 수작업으로 진행되어 많은 시간과 인력을 필요로 했습니다. 그러나 지금은 AI가 다양한 비주얼 구도를 순식간에 시뮬레이션하고, 제작자는 이 중에서 가장 적합한 것을 선택할 수 있게 되었습니다.

비용 측면에서도 큰 변화가 있었습니다. 예전에는 건물 붕괴 장면을 외부 전문업체에 맡겨야 했고, 그 비용은 수천만 원에서 수억 원에 이를 수 있었습니다. 이제는 GenAI 툴을 활용하면 이 같은 장면도 소규모 팀 내부에서 손쉽게 제작할 수 있습니다.

창작 도구로서의 AI: 대체가 아니라 보완

넷플릭스의 공동 CEO는 “AI는 창작자를 대체하는 기술이 아니라, 창작자가 더 좋은 결과물을 만들 수 있도록 돕는 도구”라고 설명했습니다. 이 발언은 AI의 역할과 방향성을 상징적으로 보여줍니다.

특히 제작 예산이 넉넉하지 않은 독립 제작자나 신생 콘텐츠 팀에게 GenAI는 탁월한 기회를 제공합니다. 과거에는 꿈만 꿨던 복잡한 장면이나 연출이 이젠 현실에서 구현 가능한 수준이 된 것입니다.

AI, 콘텐츠 제작을 넘어 넷플릭스 전반에 확산되다

넷플릭스는 AI를 단지 콘텐츠 제작에만 사용하고 있지 않습니다. 시청자 추천 알고리듬, 검색 기능, 광고 시스템 등에도 GenAI 기술을 적극적으로 도입하고 있습니다. 특히 2025년 하반기부터는 인터랙티브 광고에 AI 기반 추천 기술을 적용할 계획입니다.

AI가 사용자의 감정이나 기호, 상황까지 분석해 콘텐츠를 추천해주는 ‘감정 기반 큐레이션’도 곧 현실이 됩니다. 단순한 타이틀 검색을 넘어, 시청자 개인의 맥락까지 반영하는 개인화 경험이 가능해질 것입니다.

콘텐츠 산업에 미치는 파급력

넷플릭스의 이 같은 AI 활용은 콘텐츠 산업 전체에 큰 영향을 미칩니다. 현재 ABC, HBO, 디즈니 등 기존 방송사들도 GenAI 기술을 도입하는 방안을 두고 활발한 내부 논의를 진행 중이고, 소니 픽처스나 파라마운트와 같은 제작사들 역시 자체 AI 기술 개발에 나서고 있습니다.

이제 AI 도입은 일시적인 트렌드가 아닌, 콘텐츠 산업의 ‘뉴 노멀’로 자리 잡아가고 있습니다. 앞으로는 제작자, 연출자, 배우들까지도 AI와 함께 일하는 방식을 고민하게 될 것입니다.

창작을 강화하는 AI의 사례

AI가 창작 영역에서 논란이 되는 지금, 넷플릭스의 ‘엘 에테르나우타’ 사례는 하나의 기준을 제시합니다. 이 프로젝트에서 AI는 창작자의 구상과 연출을 시각화하는 보조자 역할을 했고, 창작의 주체는 여전히 사람이라는 점이 분명히 드러났습니다.

이러한 방식은 AI를 투명하게 활용하면서 윤리적 논란을 피해 갈 수 있는 현실적인 모델로 평가받고 있습니다.

GenAI와 넷플릭스의 전략적 성장

넷플릭스는 GenAI 기술을 통해 단지 콘텐츠 제작을 개선하는 데 그치지 않고, 플랫폼 혁신과 글로벌 시장 공략에 박차를 가하고 있습니다. 2025년 2분기 실적에 따르면 넷플릭스의 매출은 전년 대비 16% 증가한 110.8억 달러(약 14.7조 원)를, 순이익은 31.3억 달러(약 4.1조 원)를 기록했습니다.

전체 시청 시간은 950억 시간을 넘어섰고, 비영어권 콘텐츠가 그 중 약 3분의 1을 차지했습니다. 이를 통해 넷플릭스는 언어와 문화 장벽을 넘어서는 콘텐츠 제작 전략을 구체화하고 있으며, 다국적 제작을 가능하게 하는 도구로서 AI를 적극 도입하고 있는 것입니다.

앞으로의 과제: 기술과 창의력의 균형

AI 활용이 가속화되는 만큼, 그에 수반되는 윤리적·법적 문제에 대한 논의도 활발해지고 있습니다. 영상 콘텐츠는 다양한 이해관계자들이 함께 만드는 협업의 결과물이기 때문에, AI 도입 시 역할과 책임의 경계를 명확히 해야 합니다.

넷플릭스처럼 AI의 사용 범위를 투명하게 공개하고 인간 창작자의 역할을 존중하는 방식이라면, 앞으로도 AI는 엔터테인먼트 산업의 든든한 조력자가 될 수 있을 것입니다.

마무리하며: AI는 엔터테인먼트 산업의 전략적 파트너

넷플릭스는 GenAI를 창의적이면서도 효율적으로 활용하며, 콘텐츠 산업 내에서 AI 전환의 상징적인 사례를 만들어 가고 있습니다. 빠르게 변하는 환경 속에서 AI는 단순한 기술을 넘어, 경쟁력 확보와 생존 전략의 핵심으로 자리 잡고 있습니다.

앞으로 AI의 기술력이 극대화될수록 콘텐츠 제작 현장은 더 큰 변화를 겪게 될 것입니다. 하지만 중요한 것은 기술과 창의성의 균형입니다. 더욱 풍성하고 다양한 콘텐츠 세계가 열릴 수 있도록, 이 두 요소가 조화를 이루는 방향을 함께 고민하고 실천해 나가야 할 때입니다.

AI 콘텐츠 제작
AX 100배의 법칙
AX 100배의 법칙
– 나와 조직의 능력을 100배 높이는 AI 경영의 실제

도서 구매

함께 읽으면 좋은 글:

디지털 트랜스포메이션: 조직의 습관을 바꾸는 일, 도서 구매

. .

구글 딥마인드 제미나이 딥 싱크, 국제 수학 올림피아드 금메달 획득

인공지능(AI)이 단순한 계산이나 언어 생성 단계를 넘어, 인간 수준의 사고 능력을 흉내 내는 수준에 이르고 있습니다. 2025년, 구글 딥마인드(Google DeepMind)가 개발한 AI 모델 ‘제미나이 딥 싱크(Gemini Deep Think)’는 세계에서 가장 어렵다고 평가받는 국제 수학 올림피아드(IMO)에서 금메달 수준의 성과를 기록하며 전 세계를 다시 한번 놀라게 했습니다. 그동안 꾸준히 기술력을 쌓아온 딥마인드는 이번 결과를 통해 AI의 추론 능력과 문제 해결 역량이 새로운 전환점을 맞았음을 증명했습니다.

이 글에서는 이번 성과가 갖는 의미와 AI 모델의 작동 방식, 산업계와 학계에 미치는 파급력, 그리고 경쟁사인 OpenAI와의 비교까지 폭넓게 짚어보겠습니다.

국제 수학 올림피아드란 무엇인가?

국제 수학 올림피아드(IMO)는 1959년부터 매년 전 세계에서 수학에 뛰어난 고등학생들이 참가하는 경시대회입니다. 이 대회는 6문제로 구성되어 있으며, 문제의 난이도는 매우 높습니다. 대수학, 조합론, 정수론, 기하학 등 다양한 수학 분야를 아우르고 있습니다. 금메달을 획득하는 참가자의 비율은 전체의 약 8%로, 그만큼 경쟁이 치열하고 인간 사고력의 한계를 시험하는 자리라고 할 수 있습니다.

딥마인드가 참여한 이번 대회는 단순히 ‘수학 잘하는 AI’라는 묘기 수준을 넘어, AI가 인간의 사고능력을 얼마나 따라잡았는지를 점검하는 중요한 기준이 되었습니다.

딥마인드 제미나이의 금메달 획득, 무엇이 특별한가?

딥마인드의 AI 모델은 이번 IMO에서 6문제 중 5문제를 정확히 풀어내며 금메달 획득 기준을 뛰어넘는 성과를 거두었습니다. 이는 이전 해에 4문제 풀이에 그쳤던 성과를 크게 뛰어넘은 결과입니다.

특히 주목할 만한 점은 AI가 문제를 자연어로 직접 읽고, 해석하고, 복잡한 수학적 추론을 독자적으로 실행했다는 점입니다. 과거에는 사람이 문제를 수학 공식이나 코드 형태로 변환해줘야 AI가 처리할 수 있었지만, 이제는 AI 스스로 자연어로 주어진 기출문제를 이해하고, 풀이까지 마칠 수 있는 수준에 도달한 것입니다.

딥마인드의 CEO 데미스 허사비스는 “AI가 문제를 스스로 읽고, 이해하고, 국제 대회와 동일한 4.5시간 안에 풀이를 마쳤다”며, 이는 AI의 자율적인 사고 능력을 잘 보여준 사례라고 강조했습니다.

제미나이 딥 싱크(Gemini Deep Think)의 작동 원리

이번 성과는 단순한 연산 속도의 문제가 아닙니다. 제미나이 딥 싱크는 ‘병렬 추론(parallel thinking)’이라는 새롭고 진화된 사고 방식을 체화한 AI입니다. 사람처럼 다양한 접근 방법을 동시에 고려하고, 각각의 풀이 과정을 비교 분석한 후 최적의 해를 선택하는 식으로 문제를 풉니다.

기존의 AI 모델이 단일 경로를 따라 결론을 도출해왔다면, 딥 싱크는 다수의 분석 경로를 동시에 운용하며 보다 효율적인 해결책을 찾아냅니다. 이를 위해 고품질의 대규모 수학 데이터셋을 중심으로 훈련 받았고, IMO 스타일의 문제를 집중적으로 학습하여 인간 사고 패턴을 최대한 모방했습니다.

AI가 찾아낸 해답은 단순히 맞았다는 수준을 넘어서, 명확하고 조리 있으며 쉽게 이해된다는 평가를 받았습니다. 이처럼 분석적 사고와 동시에 ‘설명 가능성’까지 갖춘 AI는 산업적 활용 가능성도 더욱 높게 평가받고 있습니다.

제미나이 딥 싱크

AI가 인간과 동등한 사고를 할 수 있을까?

이번 성과는 AI의 사고 능력을 실감나게 보여주었지만, 인간 사고의 전 영역을 대체할 수 있느냐는 관점에서는 여전히 숙제가 남아있습니다.

실제로 이번 IMO 문제 중 가장 어려운 여섯 번째 문제에서는 AI도 정답을 도출해내지 못했습니다. AI는 잘못된 가설로 접근했고, 결국 해답에 도달하지 못했습니다. 이 문제를 해결한 건 단 5명의 인간 학생뿐이었습니다. 이 사례는 AI가 인간 사고에 다가섰지만, 아직 완전히 도달하지는 못했다는 점을 보여주는 대표적 장면입니다.

하지만 반대로, 어떤 문제에서는 AI가 매우 창의적인 해결 방법을 제시하기도 했습니다. 대학원 수준의 수학 지식이 필요한 문제를 초등학교 수준의 정수론 개념만으로 풀어낸 경우도 있었습니다. 딥마인드 연구원 정준혁은 “복잡한 수학적 개념 대신 더 단순한 접근으로 문제를 해결한 AI의 방식은 창의적이고 유연한 사고의 가능성을 보여준다”고 설명했습니다.

기술적 진보 이상의 도덕적 리더십

딥마인드는 이번 성과를 발표하는 과정을 통해 기술력뿐 아니라 윤리적·사회적 책임도 고려하는 태도를 보였습니다. IMO 측의 요청에 따라, AI 성과보다 인간 참가자들의 노력에 먼저 주목하고 이를 존중하는 메시지로 발표를 시작했습니다.

반면, 경쟁사인 OpenAI는 자체 위원회를 구성해 유사한 문제를 보고 평가하는 방식으로 결과를 공개했습니다. 공식 인증기관 없이 발표부터 진행한 이 방식은 투명성과 신뢰성 부분에서 아쉬움을 남겼고, AI 전문가들 사이에서도 비판을 받았습니다.

이러한 차이는 단순한 기술의 우열을 넘어서, AI 연구가 사회와 어떻게 소통해야 하는지에 대한 모범을 제시한 사례로 받아들여지고 있습니다. 앞으로 기업들이 AI 성과를 발표할 때는 기술적 정확성과 함께 윤리적 책임성 역시 중요한 평가 기준이 될 것입니다.

산업에 미치는 영향: AI가 복잡한 분석에 본격 투입되는 시대

이번 딥마인드의 진화는 AI를 단순한 보조 도구가 아니라, 복잡한 판단과 분석이 요구되는 업무의 핵심 주체로 사용할 수 있는 가능성을 열어주었습니다. 특히 금융, 공학, 과학 연구 개발 분야에서는 고도 추론 능력을 갖춘 AI에 대한 니즈가 빠르게 증가할 전망입니다.

구글은 이미 이 AI 모델을 연구자들에게 공유하고 있으며, 향후 고급 사용자 대상으로 월 250달러 수준의 유료 서비스 형태로 제공할 예정입니다. 높은 요금에도 불구하고, 글로벌 분석 전문가들과 기업 사용자들의 관심이 계속 늘고 있는 실정입니다.

향후에는 대형 회계법인이나 금융기관 등에서 수학적 모델링, 리스크 분석, 정책 시뮬레이션 같은 고도 복잡 문제에 제미나이 딥 싱크와 같은 AI가 본격 투입될 가능성이 높아질 것입니다.

여전히 남은 과제: 복잡한 현실 문제에의 적용은?

국제 수학 올림피아드는 매우 정형화된 구조의 문제이며, 정확한 정답이 존재합니다. 하지만 실제 비즈니스 및 사회 문제는 그와 비교해 훨씬 많은 불확실성과 복잡성을 안고 있으며, 유일한 정답이 존재하지 않는 경우가 대부분입니다.

따라서 이번 대회에서 보여준 AI의 사고 능력이 현실 세계의 문제에도 동일하게 적용될 수 있을지는 아직 검증이 필요합니다. 그럼에도 불구하고, 자연어로 된 문제를 이해하고 다양한 접근을 스스로 시도하는 AI의 능력은 분명한 진전을 의미합니다.

이러한 기술은 과학, 공학, 생명기술 등 다양한 분야에서 활용될 수 있으며, 장기적으로는 비전문가들조차 복잡한 문제를 분석하고 의사결정을 내리는 데 도움을 받을 수 있게 될 것입니다.

마무리: 인공지능, 이제 생각하기 시작하다

딥마인드의 제미나이 딥 싱크는 더 이상 단순한 패턴 인식기계가 아닙니다. 이번 수학 올림피아드에서의 금메달 수준 성과는 AI가 논리적 추론과 복잡한 사고 과정, 심지어는 창의적 해결까지 인간 뇌의 기능에 근접했다는 것을 보여주는 중요한 사례입니다.

그러나 우리가 주목해야 할 점은, 이 성과가 끝이 아니라 시작이라는 사실입니다. 여전히 AI는 오답을 낼 수 있으며, 이는 인간의 직관과 경험, 판단이 여전히 중요한 역할을 한다는 것을 의미합니다. 하지만 이는 동시에, AI와 인간이 경쟁이 아닌 협업의 관계로 나아갈 수 있는 가능성을 열어주는 지점이기도 합니다.

이제 경영자 여러분이 준비하실 차례입니다. AI 기술이 나아가는 방향에 꾸준히 관심을 갖고, 우리 산업과 조직이 그 흐름에 함께 성장해 나갈 수 있도록 리더십을 발휘해 주시기 바랍니다.

제미나이 딥 싱크
AX 100배의 법칙
AX 100배의 법칙
– 나와 조직의 능력을 100배 높이는 AI 경영의 실제

도서 구매

함께 읽으면 좋은 글:

디지털 트랜스포메이션: 조직의 습관을 바꾸는 일, 도서 구매

. .

중견 기업을 위한 AI 전환 가이드: Intuit Agentic AI로 업무 효율화 실현하기

중견기업은 AI 시대에 매우 중요한 위치에 있습니다. 소규모 기업보다 복잡한 시스템을 운영하면서도 대기업만큼의 자원은 갖추기 어려운 이중의 도전을 안고 있기 때문입니다. 평균적으로 25개가 넘는 독립적인 애플리케이션을 운영하는 이들은 데이터가 여기저기 흩어지고, 업무 프로세스는 비효율적으로 나뉘어 작업 시간이 길어집니다. 이러한 구조에서는 의사결정 속도도 느려질 수밖에 없습니다.

이 글에서는 Intuit의 Agentic AI가 중견 기업의 현실적인 문제를 어떻게 해결하고 있는지 자세히 소개해 드립니다. 특히 회계, 재무, 결제, 프로젝트 관리 등 핵심 영역에서 어떻게 자동화와 함께 ‘인간 중심’의 운영을 가능하게 하는지 살펴보겠습니다.

중견기업의 디지털 전환 현주소

중견 기업은 연 매출이 약 250만 달러에서 1억 달러 사이로, 더 이상 소기업용 소프트웨어로는 운영 효율을 기대하기 어렵습니다. 그러나 대기업용 솔루션을 도입하기에는 가격과 복잡도가 큰 부담이 됩니다.

예를 들어, 중견 마케팅 회사 하나가 사용 중인 툴이 30개에 달하는데, 영업, 재무, 고객 관리 시스템 모두가 따로 운영되고 있었습니다. 이로 인해 데이터를 통합 분석하기 어렵고, 하나의 리포트를 만들기 위해 부서 간 이메일과 엑셀 작업만 하루가 넘게 걸리기도 했습니다.

결국 이 기업은 의사결정과 실행 사이에 큰 시간차를 겪으며 기회를 놓치고 있는 상황이었습니다. 이런 사례는 중견 기업 전반에서 반복되고 있습니다.

Intuit의 Agentic AI가 등장한 이유

과거 AI는 단순한 반복 업무를 대신하는 데 쓰였지만, 이제는 스스로 분석하고 예측하며 실행을 보조하는 ‘에이전트(Agent)’로 진화하고 있습니다.

Intuit는 QuickBooks, TurboTax, Mailchimp 등으로 중소 비즈니스에 익숙한 이름입니다. 이 회사는 최근 중견 기업으로 고객층을 넓히며 “Intuit Enterprise Suite”를 선보였습니다. 핵심은 네 가지 AI 에이전트로 구성된 업무 자동화 플랫폼입니다. 각각 재무, 결제, 회계, 프로젝트 관리 업무를 맡아 반복 업무를 줄이고 실무자에게 인사이트를 제공합니다.

이 AI 에이전트들은 단순 자동화 그 이상의 목적을 가지고 만들어졌습니다. 복잡한 기업 내 구조를 이해하고, 여러 시스템에서 정보를 끌어와 종합하며, 사람 중심의 운영에 자연스럽게 녹아들도록 설계된 것이 가장 큰 특징입니다.

핵심 AI 에이전트 소개

각 에이전트는 중견 기업이 가장 시간을 많이 들이던 업무 영역을 중심으로 실질적인 도움을 주기 위해 개발됐습니다.

재무(Finance) 에이전트

매달 반복되는 재무 보고 작업은 회계팀의 가장 큰 부담 중 하나입니다. 이 에이전트는 수작업으로 하던 보고서 작성 과정을 자동화하고, 여러 법인의 연결 구조까지 고려해 기업 전체의 재무 상태를 요약해서 보여줍니다.

예를 들어, 다국적 마케팅 에이전시는 국가별 지사가 각기 다른 재무 시스템을 쓰고 있었지만, 이 에이전트를 도입한 후 전체 법인의 현금 흐름과 손익 현황을 단일 대시보드에서 파악하게 되었습니다. 그 결과, 경영진의 의사결정 속도가 약 3배 빨라졌다고 합니다.

결제(Payments) 에이전트

거래 대금 회수 지연은 모든 기업의 자금 운영에 큰 영향을 줍니다. 이 에이전트는 고객 청구, 미납 추적, 리마인드 이메일 발송까지 자동으로 처리합니다. 특히 고객의 과거 결제 기록을 분석해 연체 가능성을 예측하고 선제적으로 대응할 수 있도록 도와줍니다.

예를 들어, 한 건설 자재 업체는 결제까지 평균 32일이 걸렸지만 도입 후 26일로 단축되면서 현금 유동성이 크게 개선됐습니다.

회계(Accounting) 에이전트

많은 거래가 발생하는 기업일수록 회계 오류가 발생할 확률도 높습니다. 이 에이전트는 실시간으로 거래내역을 분석하고, 이중 기록이나 누락된 항목을 자동으로 탐지합니다. 세금 신고나 감사 준비에도 큰 도움이 됩니다.

온라인 쇼핑몰을 운영하는 한 기업은 계정 세부정보를 정리하는 데 매월 40시간 가까이 소요했지만, 회계 에이전트를 도입한 후에는 같은 작업을 22시간 이내로 줄일 수 있었습니다.

프로젝트 관리(Project Management) 에이전트

다양한 프로젝트를 병행하는 기업에겐 업무 진척도뿐 아니라 프로젝트별 수익 분석도 중요합니다. 이 에이전트는 진행률, 지출, 예상 수익을 실시간으로 비교 분석해 문제가 생기기 전에 경고합니다.

A 엔지니어링 기업의 경우, 종전에는 분기 말이 지나서야 손익을 확인할 수 있었지만 이제는 실시간으로 프로젝트 성과를 분석하고 필요시 빠르게 방향을 조정할 수 있게 됐습니다.

구축 복잡성 없이 도입 가능

중견기업들이 AI 도입을 주저하는 가장 큰 이유는 복잡한 시스템 구축과 ROI에 대한 불확실성 때문입니다. Intuit는 이러한 허들을 낮추기 위해 기존에 사용하던 시스템들과 자연스럽게 연결되도록 에이전트를 설계했습니다.

QuickBooks, 엑셀, CRM 등과 연동되며 별다른 코딩 지식 없이 그래픽 기반 인터페이스로 누구나 쉽게 사용할 수 있습니다. 예를 들어, 기존 회계 데이터만 불러오면 AI가 자동으로 계정 구조를 인식하고 재무 리포트를 만들어 줍니다.

Intuit의 Still 부사장은 이를 “AI가 들어갔다는 사실조차 느끼지 않을 만큼 자연스러운 사용자 경험”이라고 말했습니다.

Agentic AI

중견 기업을 위한 AI 도입 전략

중견기업이 AI 도입을 더욱 효과적으로 추진하기 위한 네 가지 전략을 소개드립니다.

첫째, 기존 운영 구조를 바꾸기보다는 현재 사용하는 시스템을 그대로 AI와 연결하는 방식이 효율적입니다. 구조를 새로 만들 필요는 없습니다.

둘째, 복잡한 법인 구조와 부서 간 관계를 이해할 수 있는 ‘지능형’ AI를 선택해야 합니다. 단순 자동화보다는 전략적 판단을 돕는 인사이트가 핵심입니다.

셋째, 워크플로우 통합이 중요합니다. 기존 플랫폼을 교체하기보다는 AI가 이를 이해하고 연동하도록 설계해야 리스크 없이 점진적인 전환이 가능합니다.

넷째, 단순 반복 업무를 넘어서 전략적 분석과 예측 기능까지 고려해야 합니다. 성과 비교, 패턴 도출, 미래 예측까지 가능한 AI여야 ROI가 실질적으로 입증됩니다.

결론: 중견 기업에 딱 맞는 ‘현실적인’ AI 도입 솔루션

중견기업은 복잡한 운영 환경에 비해 리소스가 제한된 경우가 많습니다. 이들은 대기업보다 빠른 실행력이 필요하면서도, 대규모 투자를 감수하기 어려운 현실이 있습니다.

Intuit의 Agentic AI는 이러한 현실을 충분히 이해하고 설계된 솔루션입니다. 빠른 도입이 가능하고, 기존 데이터를 활용하며, 실제 비즈니스 상황에서 바로 성과를 낼 수 있습니다.

AI는 이제 단순히 사회적 유행어가 아니라 기업 전략의 핵심 파트너로 자리 잡고 있습니다. 중견기업에게도 이제는 “AI를 도입하느냐 하지 않느냐”의 문제가 아니라 “어떻게 도입해 성과를 극대화할 것인가”가 중요한 질문이 되었습니다.

지금 시작하셔도 늦지 않았습니다. 당신의 기업이 한발 앞서갈 기회입니다.

Intuit Agentic AI
AX 100배의 법칙
AX 100배의 법칙
– 나와 조직의 능력을 100배 높이는 AI 경영의 실제

도서 구매

함께 읽으면 좋은 글:

디지털 트랜스포메이션: 조직의 습관을 바꾸는 일, 도서 구매

. .