Llama 4: 핵심 기능, 성능 비교, 활용 사례 완벽 분석

메타(Meta)의 최신 인공지능 모델 시리즈인 Llama 4가 공개되면서, AI 산업이 또 한 번 큰 변화의 흐름을 맞이하고 있습니다. 특히 Llama 4는 ‘멀티모달 기능’, ‘초장문 처리 능력’, 그리고 ‘오픈소스 공개 범위’ 측면에서 경쟁사인 OpenAI, DeepSeek, Google 등의 최신 모델들과 견주어도 손색이 없는 강점을 보이고 있습니다.

이번 글에서는 Llama 4의 핵심 기능과 기술적 진보는 물론, 각 모델의 성능 비교와 실제 활용 사례를 통해 Llama 4가 앞으로 AI 생태계에 어떤 영향을 줄 수 있을지를 조망해보도록 하겠습니다.

Llama 4: 전 라인업 총출동

Llama 4 시리즈는 세 가지 주요 모델로 이루어져 있습니다. 가장 작고 빠른 모델은 Llama 4 Scout(109B 파라미터), 중간급 모델은 Llama 4 Maverick(400B 파라미터), 그리고 아직 프리뷰 단계이지만 가장 강력한 성능을 자랑하는 Llama 4 Behemoth(2T 파라미터)입니다. 세 모델 모두 메타가 새롭게 적용한 Mixture-of-Experts(MoE) 아키텍처를 기반으로 하며, 텍스트뿐 아니라 이미지와 영상을 동시에 이해할 수 있는 멀티모달 처리를 지원합니다. 단순한 LLM(Large Language Model)에서 더 나아가, 인간의 다양한 의사소통 형태를 폭넓게 다룰 수 있는 범용 AI로의 진화를 시사하고 있습니다.

라마 4

Mixture-of-Experts 구조, 고성능과 효율을 동시에

Llama 4의 핵심 기술인 MoE 아키텍처는 기존 모델과는 연산 구조부터 다릅니다. 일반적인 LLM은 입력될 때마다 전체 파라미터를 일괄적으로 사용하지만, MoE 구조에서는 입력에 최적화된 일부 ‘전문가 모델’만 선택적으로 활성화됩니다. 예를 들어, Llama 4는 128개의 전문가 집합을 보유하고 있으며, 연산 시 이 중 두 개만을 선택해 사용하는 방식입니다. 덕분에 성능은 유지하면서도 GPU 자원 소비와 추론 비용이 대폭 절감됩니다.

특히 Llama 4 Scout은 고사양의 단일 GPU 서버(H100)에서도 원활하게 작동하고, 다수의 서버에 걸친 분산 추론도 가능합니다. 이는 비용 부담을 줄이면서도 확장 가능한 AI 솔루션 도입을 가능케 하는 중요한 요소입니다.

Scout 모델, 초장문 컨텍스트 시대 개막

Llama 4 Scout는 긴 문서 처리에 있어서 새로운 기준을 제시했습니다. 최대 1천만 토큰, 즉 약 15,000페이지에 해당하는 텍스트를 단일 입력으로 분석할 수 있는 역량을 갖췄습니다.

예를 들어, 글로벌 제약사는 수천 건의 논문을 한 번에 분석해 새로운 신약 후보를 뽑아냈고, 법무법인에서는 수백 페이지의 계약서를 단 한번의 호출로 요약해 냈습니다. 공공기관의 수년치 회의록도 하나의 AI 질의로 요약하는 데 성공했습니다. 이처럼 Scout는 단순한 문장 이해 수준을 넘어, 정보의 홍수 속에서 핵심을 추출하고 정리해 주는 ‘지식 집약형 비서’ 역할을 무리 없이 수행해 줍니다.

Maverick, 실전 업무에 최적화된 멀티모달 AI

Llama 4 Maverick은 말 그대로 멀티모달 시대를 위한 실전형 모델입니다. 문서, 이미지, 수식 등이 혼합된 복합 콘텐츠를 동시에 분석할 수 있어, 기업에서의 업무 활용 가능성이 매우 높습니다. 성능도 뛰어납니다.

예를 들어, 차트 해석 능력을 평가하는 ChartQA 벤치마크에서는 90점을 획득해 GPT-4o(85.7점)보다 앞섰고, 문서 기반 질의응답을 다루는 DocVQA에서도 94.4점으로 경쟁 모델을 압도했습니다. 이는 매뉴얼 해석, 기술자료 분석 등의 환경에서 업무 자동화를 가능하게 해주며, 실제로 기업 고객 응대, 계약서 분석, 교육 자료 요약 등에서 뛰어난 효율을 보여주고 있습니다.

Behemoth, AI ‘거물’의 탄생을 예고하다

2조 파라미터라는 방대한 모델 크기를 자랑하는 Llama 4 Behemoth는 아직 프리뷰 단계지만, 상위 벤치마크에서는 이미 충분한 실력을 입증했습니다. MATH-500처럼 수학적 추론을 요구하는 과제에서는 95점을 기록하며 GPT-4.5에 필적하는 성과를 올렸고, GPQA, MMLU Pro 등 고난도 질의응답 테스트에서도 상위권에 위치했습니다.

절대적인 파라미터 수 외에도, Behemoth는 논리적 사고와 수식 계산과 같은 고수준 AI 작업에서 강점을 보이고 있어, 신약 개발, 금융 모델링, 고급 통계 분석 등에서 활용될 가능성이 큽니다.

GPT보다 90% 저렴한 Llama, AI의 대중화를 이끈다

현재 Llama 4의 Maverick 모델은 100만 토큰 기준으로 약 0.19~0.49달러의 추론 비용이 듭니다. 이는 OpenAI의 GPT-4o(4.38달러)와 비교할 때 최대 90% 저렴한 수준으로, 중소기업과 스타트업도 자체 AI 도구를 구축하는 데 큰 부담이 없습니다. 이제 AI는 더 이상 일부 대기업의 전유물이 아닙니다. 보다 저렴한 가격에 실무형 AI를 도입할 수 있는 시대가 도래하고 있는 셈입니다.

MetaP: 대형 모델 튜닝을 자동화하다

Llama 4 개발 과정에서 또 하나 주목받은 기술은 MetaP입니다. 이는 하이퍼파라미터 튜닝—즉, 모델 성능을 높이기 위한 설정값 조정을 소형 모델에서 미리 실험해 보고, 그 결과를 다양한 규모의 모델에 그대로 적용할 수 있게 만드는 기술입니다.

초대형 모델인 Behemoth처럼 30조 토큰을 학습해야 하고, 3만 개 이상의 GPU를 동원하는 경우에는 이런 자동화 기술이 없으면 시간과 자원이 무한히 소비될 수 있습니다. MetaP는 그 비용과 시간을 획기적으로 줄이는 데 성공하였습니다.

열린 생태계 지향, Llama의 철학

메타는 Llama 모델들을 오픈소스 형태로 공개하는데 앞장서왔고, 이번 Llama 4 역시 Scout와 Maverick 모델을 Hugging Face 및 llama.com을 통해 직접 다운로드할 수 있게 했습니다. 누구나 접근하고 실험해볼 수 있는 구조로 열려 있는 것입니다.

다만 월간 사용자 수가 7억 명을 넘는 초대형 기업은 별도 라이선스 계약이 필요하지만, 전체적인 방향성은 OpenAI나 Anthropic처럼 API 중심의 폐쇄형 구조와는 단연 구분됩니다. 이는 AI 커뮤니티 전체에 활력을 불어넣는 긍정적인 전략으로 평가되고 있습니다.

안전성과 윤리성도 함께 설계되다

AI의 신뢰성과 윤리는 최근 업계의 핵심 화두인데, 메타 또한 이에 대응하는 기술을 동시에 선보이고 있습니다. 위험하거나 공격적인 텍스트를 감지하는 Llama Guard와 Prompt Guard, 그리고 모델 자체를 테스트하는 자동화 레드팀인 GOAT를 통해, 오남용 가능성을 최소화하려는 노력이 돋보입니다.

한편 정치적 균형성 확보에도 신경을 썼습니다. 훈련 과정에서 특정 진영의 편향을 줄이고, 중립적인 정보 전달에 집중하도록 설계되었다고 메타 측은 설명하고 있습니다. 보다 실용적이고 신뢰할 수 있는 AI 개발을 위한 의도가 엿보이는 대목입니다.

결론: AI 생태계를 다시 여는 메타의 변곡점

Llama 4는 단순히 새로운 AI 모델이 아니라, ‘무겁고 비싼 AI’에서 ‘가볍고 유연한 AI’로 패러다임을 전환시키려는 메타의 전략적 의도가 반영된 제품군입니다. OpenAI API의 높은 사용료가 부담되는 조직이라면 Llama 4는 분명한 대안이 될 수 있습니다. 멀티모달 AI 도입이나 초장문 분석이 필요한 엔터프라이즈 조직에게는 Maverick과 Scout 모델이 실용적입니다. 또 미래형 고성능 AI 인프라를 고려하는 대기업 및 연구소에겐 Behemoth 모델이 새로운 기회가 되어줄 것입니다.

이제 메타는 단순한 SNS 플랫폼이 아니라, AI 인프라 공급자로 진화하고 있습니다. DeepSeek의 혜성같은 등장으로 살짝 소외되었던 Llama가 다시 한번 많은 관심을 끌 것으로 보이네요. AI를 활용하는 입장에서 이러한 경쟁은 반가운 일이니 자신의 상황에 맞는 AI 모델을 선정하고, 이를 실전에 활용할 수 있도록 계속 이런 변화를 쫓아가면 좋겠습니다.

참고

Llama 4
AX 100배의 법칙
AX 100배의 법칙
– 나와 조직의 능력을 100배 높이는 AI 경영의 실제

도서 구매

함께 읽으면 좋은 글:

디지털 트랜스포메이션: 조직의 습관을 바꾸는 일, 도서 구매

. .

AI 여행 계획: 구글 Gemini와 검색, 지도 서비스를 결합한 스마트한 여행 준비

여행을 계획할 때 단순한 검색만으로는 부족함을 느낄 때가 많습니다. 반가운 소식이 있습니다. 구글이 검색(Search), 지도(Maps), 그리고 Gemini AI를 활용한 새로운 여행 계획 기능을 선보였습니다. 특히 인공지능(AI)을 적극 활용한 기능들이 추가되면서 여행 준비가 훨씬 편리해졌는데요. 이번 글에서 구글의 새로운 AI 여행 계획 기능이 어떻게 여행 준비에 도움을 줄 수 있는지 살펴보겠습니다.


구글의 새로운 여행 계획 기능

이번 업데이트에서 구글은 AI 기반 일정 추천, 호텔 가격 추적 기능, 그리고 스크린샷 기반 여행 장소 저장 기능을 도입했습니다. 각각의 기능을 자세히 알아보고, 실제 여행 계획에 어떻게 활용할 수 있을지 살펴보겠습니다.


AI 기반 여행 일정 추천: 최적의 여행 루트를 찾아주는 구글

구글 검색은 단순히 정보를 나열하는 것이 아니라, AI 개요(AI Overviews) 기능을 통해 맞춤형 여행 일정을 추천해 줍니다. 예를 들어 “자연을 중심으로 한 코스타리카 여행 일정 추천”이라고 검색하면 AI가 적절한 여행 코스를 제안합니다.

image 33

이 기능의 핵심은 지역과 테마에 맞춰 최적의 일정을 구성해준다는 점입니다. 사용자는 AI가 추천한 일정을 단순히 참고하는 것에 그치지 않고, 본인의 선호에 따라 직접 수정할 수도 있습니다.

실제 여행에서 활용하는 방법도 간단합니다. 유럽 배낭여행을 계획 중이라면 “파리 3일 여행 코스 추천”을 검색하면 됩니다. 그러면 구글 AI가 각 날짜별 추천 장소와 이동 경로를 고려해 최적의 일정을 생성해줍니다. 별도로 일정을 검색하고 정리할 필요 없이, 한눈에 보기 좋은 일정표를 얻을 수 있죠.


호텔 가격 추적 기능: 숙박 비용을 똑똑하게 절약하는 법

숙박 비용은 여행 예산에서 큰 비중을 차지하는 요소입니다. 구글은 기존의 항공권 가격 추적 기능을 확장해, 이제 호텔 요금도 추적할 수 있도록 업그레이드했습니다.

이 기능을 이용하면 특정 날짜와 도시에 대한 숙박 요금 변동을 실시간으로 모니터링할 수 있습니다. 가격이 내려가면 이메일 알림이 자동으로 발송되기 때문에 최적의 시점에 예약할 수 있습니다. 또한 필터 기능을 함께 활용하면 원하는 위치나 호텔 등급에 맞춰 검색도 가능합니다.

예를 들어 여름휴가 시즌에는 호텔 요금이 비싸기 마련입니다. 이때 미리 예약해 두고, 가격 추적 기능을 활성화하면 나중에 가격이 하락할 경우 재예약할 수 있습니다.

실제 사례를 들어보겠습니다. 미국 라스베이거스를 여행할 계획이라면 CES 같은 대형 이벤트 기간 동안 호텔 가격이 급등하는 경우가 많습니다. 이 기능을 활용하면 미리 예약하면서도 가격이 내려가면 알림을 받아, 더 저렴한 옵션을 선택할 수 있습니다. 구글의 호텔 가격 추적 기능은 전 세계적으로 제공되기 때문에 해외여행에서도 유용하게 활용할 수 있습니다.


스크린샷 기반 지도 저장 기능: 여행 정보를 쉽게 정리하는 법

여행을 준비할 때, SNS에서 본 맛집이나 명소의 스크린샷을 저장해두는 경우가 많습니다. 하지만 시간이 지나면 저장한 스크린샷을 다시 찾기도 번거롭고, 일일이 정리하기 어렵습니다.

구글 지도(Google Maps)는 이제 스크린샷에서 여행지를 자동으로 인식해 정리해주는 기능을 제공합니다. 사용자가 찍어둔 스크린샷을 분석해, 관련 장소를 구글 지도에 자동으로 정리해주는 방식입니다.

이 기능을 활용하면 예전처럼 여행 노트를 따로 만들 필요가 없습니다. 예를 들어 일본 도쿄 여행을 준비하면서 SNS에서 본 맛집의 스크린샷을 저장해두면, 구글 지도가 자동으로 이를 인식해 리스트를 만들어줍니다. 이를 활용해 이동 동선을 짜고, 보다 효율적인 여행 계획을 세울 수 있습니다.


Google Gemini AI를 활용한 맞춤형 여행 가이드

이번 업데이트에서 가장 주목할 점은 Google Gemini AI가 여행 계획을 보다 효율적으로 도와준다는 점입니다. Gemini AI는 여행 일정 추천뿐만 아니라, 특정 목적지 추천, 여행 필수품 리스트 작성, 각종 관광 명소 추천까지 다양한 기능을 제공합니다.

예를 들어 “서울에서 하루 동안 할 수 있는 이색 체험은?” 같은 질문을 하면, AI가 적절한 경험과 루트를 추천해 줍니다. 또 “여름 휴가를 위한 가방 챙기기 리스트”를 입력하면, 여행지와 계절을 고려한 짐 목록을 자동으로 작성해 주는 것도 가능합니다. Gemini AI를 활용하면 보다 체계적이고 맞춤형으로 여행을 계획할 수 있습니다.


결론: 이제 스마트하게 여행을 준비하자!

구글의 새로운 여행 기능을 활용하면 더 쉽고 효과적으로 여행을 준비할 수 있습니다. AI가 제공하는 맞춤형 일정 추천 덕분에 여행 계획이 한결 수월해지고, 호텔 가격 추적 기능을 통해 숙박 비용도 절약할 수 있습니다. 또한 스크린샷을 구글 지도와 연동해 여행 정보를 자동으로 정리할 수 있으며, Gemini AI가 제공하는 맞춤형 가이드를 통해 더욱 체계적인 계획을 세울 수도 있습니다. 이제 단순한 검색을 넘어, 보다 스마트한 방식으로 여행을 계획해보세요.

참고로 이 기능은 미국에서 영어로 안드로이드에 우선 출시되며, iOS에서는 곧 출시될 예정입니다. 다른 국가는 조금 더 기다려야할 것 같습니다.

참고

AI 여행 계획
AX 100배의 법칙
AX 100배의 법칙
– 나와 조직의 능력을 100배 높이는 AI 경영의 실제

도서 구매

함께 읽으면 좋은 글:

디지털 트랜스포메이션: 조직의 습관을 바꾸는 일, 도서 구매

. .

Nova Act: 아마존 AI 에이전트, 웹 자동화의 미래

2025년 3월, 아마존이 ‘Nova Act’라는 이름의 AI 에이전트가 소개하였습니다. 이번 글에서는 Amazon이 선보인 Nova Act의 핵심 기능과 전략적 의미, 경쟁 서비스와의 차별점, 그리고 이 기술이 향후 사용자 경험을 어떻게 변화시킬 수 있는지를 살펴보려 합니다.

Nova Act는 어떤 서비스인가요?

Nova Act는 웹 브라우저를 직접 조작할 수 있는 AI 비서입니다. 사용자가 키보드나 마우스를 사용하지 않고도 음성이나 텍스트로 지시를 내리면, Nova Act가 스스로 웹사이트에 접속해 버튼을 클릭하고, 폼을 작성하며, 필요한 작업을 완료하는 방식입니다.

무엇보다 이 비서는 단순히 질문에 답하는 수준이 아니라, 인간처럼 웹페이지를 탐색하고 이동하며, 실제 브라우저 내에서 행동을 수행할 수 있습니다. 예컨대, “오늘 저녁 7시에 강남역 근처 스시 레스토랑을 예약해줘”라고 명령하면, Nova Act는 주변 레스토랑을 검색하고, 예약 웹사이트에 접속해 시간과 인원수를 입력한 뒤 예약 완료까지 전 과정을 스스로 수행합니다. 기존의 챗봇이나 AI보다 훨씬 더 풍부한 실행력을 갖춘 셈입니다.

아마존 노바 액트

Nova Act를 가능하게 한 기술적 기반

Nova Act는 아마존이 미국 샌프란시스코에 새로 설립한 ‘AGI 랩’에서 개발한 결과물입니다. 이 연구소는 OpenAI 출신인 데이비드 루안과 Covariant 공동 창업자인 피에터 아비엘이 이끌고 있으며, 이름처럼 AGI(Artificial General Intelligence), 즉 인간 수준의 범용 인공지능 구현을 목표로 하고 있습니다.

여기서 탄생한 Nova Act는 정형·비정형 웹 환경 모두에서 반복적인 작업을 정확히 수행할 수 있도록 설계됐습니다. 핵심적인 기술은 ‘Agentic 시스템’입니다. 이는 사용자의 개입 없이도 작업을 조직적으로 계획하고 실행할 수 있도록 만들어졌습니다. 작업 순서를 자동으로 판단하고 최적의 흐름을 구성하는 기능이 내장되어 있어, 복잡한 프로세스도 스스로 처리할 수 있는 것입니다.

또한, 아마존은 Nova Act를 단일 제품에 그치지 않고 플랫폼화하고자 Nova Act용 소프트웨어 개발 키트(SDK)도 공개했습니다. 이를 통해 외부 개발자들도 자신만의 맞춤형 AI 에이전트를 개발할 수 있으며, 다양한 서비스에 연동하여 자체 워크플로우를 자동화할 수 있게 되었습니다.

구체적인 활용 예시로 본 Nova Act

Nova Act는 특히 반복되거나 소규모지만 번거로운 작업들을 빠르게 자동화하는 데 강점을 보입니다. 실제 활용 시나리오를 통해 그 가치를 실감하실 수 있습니다.

예를 들어, “두부, 우유, 달걀 주문해줘”라고 말하면 Nova Act는 아마존 쇼핑몰에 접속한 뒤 제품을 검색하고 가격 대비 품질을 비교해 장바구니에 담고 주문까지 완료합니다. 사용자는 단 한 마디만 하면 됩니다. 또는 “어머니 생신 저녁 예약해줘”라는 요청에도, Nova Act는 사용자의 지역과 선호도를 바탕으로 레스토랑 예약 플랫폼에 접속해 적절한 장소를 찾고 예약을 마무리합니다. 전화 한 통 필요 없이 시간과 수고를 절약할 수 있습니다.

비즈니스 환경에서도 유용합니다. “다음 주 수요일 오전 10시에 김과장과 회의 잡아줘”라고 말하면, 이 비서는 Google Calendar에 접속해 새로운 일정을 생성하고, 관련된 참석자와 일정을 공유합니다. 무심코 던진 음성 명령 하나가 회의 일정을 만들어주는 셈입니다.

Nova Act의 경쟁력은 어디에 있나요?

Nova Act는 최근 등장한 여러 AI 에이전트들과 비교해 다음과 같은 차별화 지점을 갖고 있습니다.

첫째, 웹 브라우징 정확도에서 우위를 보이고 있습니다. 아마존의 자체 테스트에 따르면, Nova Act는 ‘ScreenSpot Web Text’라는 기준에서 94%의 정확도를 기록했습니다. 이는 OpenAI의 Operator(88%)나 Anthropic의 Claude 3.7 Sonnet(90%)보다 높은 수치로, 실제 웹 페이지 내 인터페이스를 인식하고 행동으로 옮기는 정밀도가 뛰어남을 보여줍니다.

둘째, Amazon의 차세대 음성 비서 ‘Alexa+’와 통합되어 있어 사용자 접근성이 뛰어납니다. Nova Act는 단순한 명령어만 수행하는 기존 Alexa를 넘어, 진짜로 웹 브라우저 안에서 동작하는 ‘대행자’ 역할을 수행합니다. 스마트 스피커만 있으면 복잡한 웹 작업까지 음성으로 지시할 수 있게 되는 것입니다.

셋째, SDK 형태로 개발 생태계를 확장하고 있다는 점도 주목할 만합니다. Nova Act SDK는 누구나 접근 가능하며, 이미 많은 개발자와 기업들이 자사의 서비스에 맞는 에이전트를 구축하고 있습니다. 이는 Amazon이 단순한 기술 제공자가 아니라 플랫폼 중심 기업으로 자리매김하려는 전략의 일환이라고 볼 수 있습니다.

Nova Act는 분명 인상적인 진전을 보여주고 있지만, 아직 넘어서야 할 과제도 있습니다. 가장 큰 문제는 ‘작업 지속성’입니다. 초기 단계의 AI 에이전트 대부분이 긴 시간 동안 스스로 작업을 수행하는 데에 한계를 보였고, Nova Act 역시 초기 버전인 만큼 완전한 자율성 확보는 과제로 남아 있습니다.

또 하나의 도전은 ‘도메인 전환’ 문제입니다. 다양한 플랫폼에서 쓰일 수 있는 범용성이 필요한데, 웹사이트 구조나 인터페이스가 예상과 다를 경우 여전히 오작동 가능성이 존재합니다. 예컨대 회원가입 양식처럼 구조가 지역별, 서비스별로 다른 경우에는 실수가 발생할 수 있습니다.

마지막으로, 개인정보 보호와 관련된 우려도 있습니다. 웹 브라우저를 제어하면서 민감한 정보에 접근하게 되는 만큼, 보안 수준이 매우 중요한 기준으로 작용합니다. 특히 자동 결제 기능까지 활성화된다면, 프라이버시 설정과 데이터 보호에 대한 신뢰 확보가 선결 과제입니다.

지금 Nova Act에 주목해야 하는 이유

아마존은 AWS와 Alexa, Amazon Go 같은 혁신적 서비스를 연이어 선보이며 기술 주도 기업의 이미지를 구축해왔습니다. Nova Act는 이러한 혁신의 연장선에 놓인 도구로서, 앞으로 우리가 디지털을 활용하는 방식을 근본적으로 단순화하고 효율화할 가능성이 높습니다.

무엇보다 이 기술은 단기간의 유행을 넘어서, 실제 B2B SaaS 기업이나 전자상거래 플랫폼, 금융·UX 분야까지 도입 논의가 진행되고 있다는 점에서 장기적인 생태계 구축 가능성을 보여주고 있습니다. 결국 이 에이전트는 기업의 생산성과 서비스 경험을 동시에 향상시키는 동반자로 진화하게 될 것입니다.

결론: AI 비서를 넘어 현실 파트너로

Nova Act는 단순한 기술이 아닙니다. 이 AI는 우리가 웹에서 수행하는 수많은 일을 ‘대신’이 아니라 ‘확장된 능력’의 형태로 처리하게끔 설계되어 있습니다. 향후 2~3년 내 Nova Act는 식당 예약부터 정기적인 회계 업무, 계약서 확인에 이르기까지 점점 더 다양한 환경에서 도움을 주는 현실적인 동반자로 진화할 가능성이 큽니다. 그 성공 여부는 AI 기술 이상의 의미를 지니며, 디지털 시대의 업무 처리 방식을 새롭게 정의하는 분기점이 될 것입니다.

따라서 AI, 특히 Agent 기술에 관심 있는 기업이나 리더라면 지금이 바로 Nova Act의 가능성을 바라보고, 자사 서비스나 워크플로우에 어떻게 활용할 수 있을지를 고민해봐야 할 시점입니다.

Nova Act
AX 100배의 법칙
AX 100배의 법칙
– 나와 조직의 능력을 100배 높이는 AI 경영의 실제

도서 구매

함께 읽으면 좋은 글:

디지털 트랜스포메이션: 조직의 습관을 바꾸는 일, 도서 구매

. .